津云客户端

为您提供最新、最全的新闻资讯

科技

津云客户端2024年11月16日发布:大语言模型的致命弱点:苹果揭开AI推理的假象

作者:仓崎青儿 | 责任编辑:Admin

本次大会汇集了来自全球各地的科技领袖,共同探讨未来科技趋势...

【2024年新澳门正版资料】

【新奥彩内部资料查询】

【新澳精准资料免费提供510期】
【2024新澳门天天开奖大全】
【新澳门今晚开奖结果查询】
【澳门六彩网址】
【新澳门管家婆一句话】
【新澳门免费资料大全历史记录开马】
【2004新澳门开奖结果查询】
【正版2023澳门天天开好彩大全】

苹果公司最近的一项研究揭示了大语言模型(LLM)推理能力的“脆弱性”,表明即使是对查询的微小修改也会导致模型犯下重大错误。虽然如今的生成式AI可以进行流畅的人类对话,但这并不意味着它们具备真正的人类推理能力。苹果团队的研究对此问题给出了明确的否定答案。

LLM的认知假象

大语言模型像GPT或者谷歌的Gemma这样的AI模型,并不“真正”理解或知道任何事情。它们只是通过概率计算,根据输入生成新的单词序列,看起来像是具有知识和推理能力。有人认为,生成式AI可能使用了另一种方式来实现功能性的智能,然而苹果团队的实验表明,这种“智能”相当脆弱。

该研究测试了20款强大的LLM,给它们提供了名为GSM8K的测试题集。GSM8K包含8500个语言多样、与小学数学相关的文字题目,通常用于评估模型的推理能力。不过,苹果团队并没有直接使用这些现有的问题,而是进行了微小的修改——更换了数字、名字或物品——以确保模型无法依赖记忆中的训练数据解决问题。

微小修改,大幅失误

研究结果显示,模型面对修改后的题目表现明显下降。具体表现为,不同模型的准确率下降幅度从9.2%(Mistral)到0.3%(GPT-4o)不等。这表明模型无法真正理解问题,而仅仅是在进行模式匹配。当研究人员重复修改问题并进行50次测试时,不同模型的准确率差异甚至高达15%。

无关信息的干扰测试

更具挑战性的测试是在问题中添加无关的信息。比如,在一个需要简单算术运算的题目中,研究人员增加了一句“有些猕猴桃很小”的无关描述。人类读者会轻松忽略这句无关的信息,但大部分LLM却被彻底迷惑,准确率相比原始问题下降了17.5%到65.7%不等。即使是表现最好的GPT-4o,也因这些干扰信息丢失了30%的准确率。

模式匹配与推理能力的区别

这项研究凸显了LLM的局限性。尽管生成式AI看起来能够进行推理,但实际上它们只是通过模式匹配生成答案,而不具备真正的理解能力。稍微的变化或干扰信息就能让它们的输出变得不可靠,而这在越来越多人依赖AI时可能会带来问题。

尽管意识到LLM推理能力的脆弱性,苹果公司仍然不愿意在AI领域落后于人。它已经在iOS和macOS的最新版本中整合了基于GPT的语言模型,并通过Siri推出了新的AI功能。虽然这些功能目前仍处于“预览”阶段,但随着技术的进步,更多功能将在未来几个月陆续推出。

总的来说,苹果的这项研究警示了AI在推理和理解方面的局限性,提醒我们要谨慎对待AI输出的结果,尤其是在需要严谨推理的场景中。

【2024澳门天天好开彩】 【新奥彩2024最新资料大全】 【22023管家婆一肖中特】 【4949澳门免费精准大全】 【新澳门资料大全免费新鼬077】 【2024澳门天天开彩大全】 【2024六开彩天天免费资料】

作者简介:文森特·阿德里安,资深科技记者,专注于人工智能和数字化转型领域的报道。

最新评论

Mourad 2024-11-15 13:14

7%不等。

IP:85.54.9.*

Hoang 2024-11-15 15:14

无关信息的干扰测试

IP:16.12.2.*

森下由樹子 2024-11-15 14:16

虽然这些功能目前仍处于“预览”阶段,但随着技术的进步,更多功能将在未来几个月陆续推出。

IP:30.83.5.*